[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: year 1, Issue 1 (6-2024) ::
IJLS 2024, 1(1): 1-11 Back to browse issues page
The impact of subjecting Turki-Qashqai goats to elevated thermo-humidity index under different nutritional systems on their performance, blood metabolites, and oxidative status
Amir Ahmadpour * , Shiva Forouzanfar , Nazanin Sajjadi , Ahmad Oryan , Mousa Zarrin
Department of Animal Science, Faculty of Agriculture and Natural Resources, Yasouj University
Abstract:   (897 Views)
Due to scarce research on how exposure to hot climates and different feeding schedules affects the oxidative status of nomadic animals a study was conducted with 66, 3 to 4 years old  female Turki-Qashqai goats, weighing an average of 41.50±4.75 kg (mean ± standard error), and milk yield of 1.18±0.31 kg in a factorial experiment with a complete randomized design as a basic design. The goats were randomly divided into three groups: 1- natural pasture fed (M), 2- natural pasture in addition to 500 g of concentrate per day (MS), and 3- natural pasture hay along with 500 g of concentrate (AS). The experimental phase commenced on April 20th and concluded on June 20th. The collected data underwent statistical analysis using the mixed procedure of SAS. The body condition score was similar across all experimental groups during spring, but a notable decline was observed in summer within the pasture group. During the summer season, feed intake experienced a significant decrease compared to spring. Seasonal variations had a notable impact on milk production and fat-corrected milk (FCM) levels, as anticipated. The spring season exhibited the highest values in both aspects. The concentration of ROMs was affected by the season, diet, and the interaction of them. GPx and SOD showed increased activity in summer when compared to spring. Moreover, α-tocopherol levels were higher in spring than in summer. The results from this study suggest that seasonal variations have a more pronounced impact on oxidative status markers in dairy goats than nutritional factors.

 
Keywords: Metabolic study, nomadic livestock, nutrition, oxidative stress, rural livestock
Full-Text [PDF 698 kb]   (215 Downloads)    
Type of Study: Research Article | Subject: Animal physiology
Received: 2024/06/18 | Accepted: 2024/06/22 | Published: 2024/06/22
References
1. Antanaitis, R., Džermeikaitė, K., Krištolaitytė, J., Girdauskaitė, A., Arlauskaitė, S., Tolkačiovaitė, K., & Baumgartner, W. (2024). The Relation between Milk Lactose Concentration and the Rumination, Feeding, and Locomotion Behavior of Early-Lactation Dairy Cows. Animals, 14(6), 836. doi: 10.3390/ani14060836 [DOI:10.3390/ani14060836]
2. AOAC. Official Methods of Analysis. 18th ed. Washington DC: Association Official Analytical Chemist; 2005.
3. Asadian, A., Mirhadi, S., & Mezes, M. (1995). Seasonal variation in the concentration of vitamins A and E in the blood plasma of fat-tailed sheep. Acta Veterinaria Hungarica, 43(4), 453-461.
4. Bava, L., Rapetti, L., Crovetto, G. M., Tamburini, A., Sandrucci, A., Galassi, G., & Succi, G. (2001). Effects of a Nonforage Diet on Milk Production, Energy, and Nitrogen Metabolism in Dairy Goats throughout Lactation. Journal of Dairy Science, 84(11), 2450-2459. doi: 10.3168/jds.S0022-0302(01)74695-4 [DOI:10.3168/jds.S0022-0302(01)74695-4]
5. Bizoń, A., Chojdak-Łukasiewicz, J., Budrewicz, S., Pokryszko-Dragan, A., & Piwowar, A. (2023). Exploring the Relationship between Antioxidant Enzymes, Oxidative Stress Markers, and Clinical Profile in Relapsing-Remitting Multiple Sclerosis. Antioxidants, 12(8), 1638. doi: 10.3390/antiox12081638 [DOI:10.3390/antiox12081638]
6. Bhusari, S., Hearne, L. B., Spiers, D. E., Lamberson, W. R., & Antoniou, E. (2008). Transcriptional profiling of mouse liver in response to chronic heat stress. Journal of Thermal Biology, 33(3), 157-167. doi: 10.1016/j.jtherbio.2008.01.001 [DOI:10.1016/j.jtherbio.2008.01.001]
7. Campbell, A. G. (1966). Grazed pasture parameters. I. Pasture dry-matter production and availability in a stocking rate and grazing management experiment with dairy cows. The Journal of Agricultural Science, 67(2), 199-210. doi: 10.1017/S0021859600068283 [DOI:10.1017/S0021859600068283]
8. Chauhan, S. S., Zhang, M., Osei-Amponsah, R., Clarke, I., Sejian, V., Warner, R., & Dunshea, F. R. (2023). Impact of heat stress on ruminant livestock production and meat quality, and strategies for amelioration. Animal Frontiers, 13(5), 60-68. doi: 10.1093/af/vfad046 [DOI:10.1093/af/vfad046]
9. Darbaz, İ., Salar, S., Sayiner, S., Baştan, İ., Ergene, O., & Baştan, A. (2019). Evaluation of milk glutathione peroxidase and superoxide dismutase levels in subclinical mastitis in Damascus goats. Turkish Journal of Veterinary and Animal Sciences, 43(2), 259-263. doi: 10.3906/vet-1810-60 [DOI:10.3906/vet-1810-60]
10. Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3), 260-268. doi: 10.14202/vetworld.2016.260-268 [DOI:10.14202/vetworld.2016.260-268]
11. El-Tarabany, M. S., El-Tarabany, A. A., Roushdy, E. M. (2018). Impact of lactation stage on milk composition and blood biochemical and hematological parameters of dairy Baladi goats. Saudi Journal of Biological Sciences, 25:1632-8. doi: 10.1016/j.sjbs.2016.08.003. [DOI:10.1016/j.sjbs.2016.08.003]
12. Giannone, C., Bovo, M., Ceccarelli, M., Torreggiani, D., & Tassinari, P. (2023). Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals, 13(22), 3451. doi: 10.3390/ani13223451 [DOI:10.3390/ani13223451]
13. Giorgio, D., Di Trana, A., Di Gregorio, P., Rando, A., Avondo, M., Bonanno, A., … Di Grigoli, A. (2020). Oxidative Status of Goats with Different CSN1S1 Genotypes Fed ad Libitum with Fresh and Dry Forages. Antioxidants, 9(3), 224. doi: 10.3390/antiox9030224 [DOI:10.3390/antiox9030224]
14. Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures, and some applications). US Agricultural Research Service.
15. Goetsch, A. L., Detweiler, G., Sahlu, T., Puchala, R., & Dawson, L. J. (2001). Dairy goat performance with different dietary concentrate levels in late lactation. Small Ruminant Research, 41(2), 117-125. doi: 10.1016/S0921-4488(01)00212-7 [DOI:10.1016/S0921-4488(01)00212-7]
16. Grant, R. J. (1997). Interactions Among Forages and Nonforage Fiber Sources. Journal of Dairy Science, 80(7), 1438-1446. doi: 10.3168/jds.S0022-0302(97)76073-9 [DOI:10.3168/jds.S0022-0302(97)76073-9]
17. Gupta, M., & Mondal, T. (2021). Heat stress and thermoregulatory responses of goats: A review. Biological Rhythm Research, 52(3), 407-433. doi: 10.1080/09291016.2019.1603692 [DOI:10.1080/09291016.2019.1603692]
18. Habeeb, A. A., Osman, S. F., Teama, F. E. I., Gad, A. E. (2023). The detrimental impact of high environmental temperature on physiological response, growth, milk production, and reproductive efficiency of ruminants. Trop Anim Health Prod, 55:388. doi: 10.1007/s11250-023-03805-y. [DOI:10.1007/s11250-023-03805-y]
19. Halliwell, B. (1988). Albumin-An important extracellular antioxidant? Biochemical Pharmacology, 37(4), 569-571. doi: 10.1016/0006-2952(88)90126-8 [DOI:10.1016/0006-2952(88)90126-8]
20. Helrich, K. (1990). Official methods of analysis of the Association of official analytical chemists (15th ed). Arlington (Va.): Association of official analytical chemists.
21. Idris, M., Uddin, J., Sullivan, M., McNeill, D. M., & Phillips, C. J. C. (2021). Non-Invasive Physiological Indicators of Heat Stress in Cattle. Animals, 11(1), 71. doi: 10.3390/ani11010071 [DOI:10.3390/ani11010071]
22. Idris, M. (2020). Behavioural and physiological responses of beef cattle to hot environmental conditions. The University of Queensland.
23. Ingraham, R., Stanley, R., & Wagner, W. (1979). Seasonal effects of tropical climate on shaded and nonshaded cows as measured by rectal temperature, adrenal cortex hormones, thyroid hormone, and milk production. American Journal of Veterinary Research, 40(12), 1792-1797.
24. Institut National de la Recherche Agronomique. (1998). Alimentation des bovins ovins et caprins. Paris: INRA.
25. Iuliano, L., Micheletta, F., Maranghi, M., Frati, G., Diczfalusy, U., & Violi, F. (2001). Bioavailability of Vitamin E as Function of Food Intake in Healthy Subjects: Effects on Plasma Peroxide-Scavenging Activity and Cholesterol-Oxidation Products. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(10). doi: 10.1161/hq1001.098465 [DOI:10.1161/hq1001.098465]
26. Jarrige, R., & Jarrige, R. (Eds.). (1988). Alimentation des bovins ovins & caprins. Paris: Inst. National de la Recherche Agronomique.
27. Kawas, J. R., Lopes, J., Danelon, D. L., & Lu, C. D. (1991). Influence of forage-to-concentrate ratios on intake, digestibility, chewing and milk production of dairy goats. Small Ruminant Research, 4(1), 11-18. doi: 10.1016/0921-4488(91)90048-U [DOI:10.1016/0921-4488(91)90048-U]
28. Kim, S. H., Ramos, S. C., Valencia, R. A., Cho, Y. I., & Lee, S. S. (2022). Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows. Frontiers in Microbiology, 13, 804562. doi: 10.3389/fmicb.2022.804562 [DOI:10.3389/fmicb.2022.804562]
29. Konvičná, J., Vargová, M., Paulíková, I., Kováč, G., & Kostecká, Z. (2015). Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Veterinaria Brno, 84(2), 133-140. [DOI:10.2754/avb201584020133]
30. Machlin, L. J., & Bendich, A. (1987). Free radical tissue damage: Protective role of antioxidant nutrients 1. The FASEB Journal, 1(6), 441-445. doi: 10.1096/fasebj.1.6.3315807 [DOI:10.1096/fasebj.1.6.3315807]
31. Marlin, D. J., Fenn, K., Smith, N., Deaton, C. D., Roberts, C. A., Harris, P. A., … Kelly, F. J. (2002). Changes in Circulatory Antioxidant Status in Horses during Prolonged Exercise. The Journal of Nutrition, 132(6), 1622S-1627S. doi: 10.1093/jn/132.6.1622S [DOI:10.1093/jn/132.6.1622S]
32. Mazur, A., Al-Kotobe, M., & Rayssiguier, Y. (1987). Influence de la lipomobilisation sur la sécrétion des triglycérides par le foie, chez le mouton. Reproduction Nutrition Développement, 27(1B), 317-318. doi: 10.1051/rnd:19870268 [DOI:10.1051/rnd:19870268]
33. McMurray, C. H., & Blanchflower, W. J. (1979). Application of a high-performance liquid chromatographic fluorescence method for the rapid determination of α-tocopherol in the plasma of cattle and pigs and its comparison with direct fluorescence and high-performance liquid chromatography-Ultraviolet detection methods. Journal of Chromatography A, 178(2), 525-531. doi: 10.1016/S0021-9673(00)92511-1 [DOI:10.1016/S0021-9673(00)92511-1]
34. McNamara, J. P. (1991). Regulation of Adipose Tissue Metabolism in Support of Lactation. Journal of Dairy Science, 74(2), 706-719. doi: 10.3168/jds.S0022-0302(91)78217-9 [DOI:10.3168/jds.S0022-0302(91)78217-9]
35. Mehaba, Salama, Such, Albanell, & Caja. (2019). Lactational Responses of Heat-Stressed Dairy Goats to Dietary L-Carnitine Supplementation. Animals, 9(8), 567. doi: 10.3390/ani9080567 [DOI:10.3390/ani9080567]
36. Mikulková, K., Illek, J., & Kadek, R. (2020). Glutathione redox state, glutathione peroxidase activity and selenium concentration in periparturient dairy cows, and their relation with negative energy balance. Journal of Animal and Feed Sciences, 29(1), 19-26. doi: 10.22358/jafs/117867/2020 [DOI:10.22358/jafs/117867/2020]
37. Nardone, A., Lacetera, N., Bernabucci, U., & Ronchi, B. (1997). Composition of Colostrum from Dairy Heifers Exposed to High Air Temperatures During Late Pregnancy and the Early Postpartum Period. Journal of Dairy Science, 80(5), 838-844. doi: 10.3168/jds.S0022-0302(97)76005-3 [DOI:10.3168/jds.S0022-0302(97)76005-3]
38. Ponnampalam, E. N., Kiani, A., Santhiravel, S., Holman, B. W. B., Lauridsen, C., & Dunshea, F. R. (2022). The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality-Invited Review. Animals, 12(23), 3279. doi: 10.3390/ani12233279 [DOI:10.3390/ani12233279]
39. Rhoads, M. L., Rhoads, R. P., VanBaale, M. J., Collier, R. J., Sanders, S. R., Weber, W. J., … Baumgard, L. H. (2009). Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. Journal of Dairy Science, 92(5), 1986-1997. doi: 10.3168/jds.2008-1641 [DOI:10.3168/jds.2008-1641]
40. Salama, A. A. K., Caja, G., Hamzaoui, S., Badaoui, B., Castro-Costa, A., Façanha, D. A. E., … Bozzi, R. (2014). Different levels of response to heat stress in dairy goats. Small Ruminant Research, 121(1), 73-79. doi: 10.1016/j.smallrumres.2013.11.021 [DOI:10.1016/j.smallrumres.2013.11.021]
41. Sano, H., Ambo, K., & Tsuda, T. (1985). Blood Glucose Kinetics in Whole Body and Mammary Gland of Lactating Goats Exposed to Heat. Journal of Dairy Science, 68(10), 2557-2564. doi: 10.3168/jds.S0022-0302(85)81137-1 [DOI:10.3168/jds.S0022-0302(85)81137-1]
42. Santucci, P.-M., Branca, A., Napoleone, M., Bouche, R., Aumont, G., Poisot, F., & Alexandre, G. (1991). Body condition scoring of goats in extensive conditions. Goat Nutrition, 46, 240-250.
43. Schmidely, P., Lloret-Pujol, M., Bas, P., Rouzeau, A., & Sauvant, D. (1999). Influence of Feed Intake and Source of Dietary Carbohydrate on Milk Yield and Composition, Nitrogen Balance, and Plasma Constituents of Lactating Goats. Journal of Dairy Science, 82(4), 747-755. doi: 10.3168/jds.S0022-0302(99)75292-6 [DOI:10.3168/jds.S0022-0302(99)75292-6]
44. Shakour, A., & Rezaei, M. (2010). Studying comparing economic patterns of production in ghashghaei tribe, firoozabad & measuring their inclination for change of life style. Journal of Human Geography, 2(2), 123-133. Retrieved from https://www.sid.ir/paper/177079/en
45. Srivastava, A., Yadav, P., Mahajan, A., Anand, M., Yadav, S., Madan, A. K., & Yadav, B. (2021). Appropriate THI model and its threshold for goats in semi-arid regions of India. Journal of Thermal Biology, 96, 102845. doi: 10.1016/j.jtherbio.2021.102845 [DOI:10.1016/j.jtherbio.2021.102845]
46. Steinshamn, H., & Leiber, F. (2023). Revision of Vitamin E recommendations for dairy cows in organic agriculture: A review-based approach. Biological Agriculture & Horticulture, 39(4), 223-246. doi: 10.1080/01448765.2023.2200204 [DOI:10.1080/01448765.2023.2200204]
47. Strycharz-Dudziak M, Fołtyn S, Dworzański J, Kiełczykowska M, Malm M, Drop B, et al. Glutathione Peroxidase (GPx) and Superoxide Dismutase (SOD) in Oropharyngeal Cancer Associated with EBV and HPV Coinfection. Viruses. 2020;12(9):1008. DOI: 10.3390/v12091008 [DOI:10.3390/v12091008]
48. Tsiplakou, E., Mitsiopoulou, C., Mavrommatis, A., Karaiskou, C., Chronopoulou, E. G., Mavridis, G., … Zervas, G. (2018). Effect of under‐ and overfeeding on sheep and goat milk and plasma enzymes activities related to oxidation. Journal of Animal Physiology and Animal Nutrition, 102(1). doi: 10.1111/jpn.12741 [DOI:10.1111/jpn.12741]
49. Yang, L., Tan, G.-Y., Fu, Y.-Q., Feng, J.-H., & Zhang, M.-H. (2010). Effects of acute heat stress and subsequent stress removal on function of hepatic mitochondrial respiration, ROS production and lipid peroxidation in broiler chickens. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 151(2), 204-208. doi: 10.1016/j.cbpc.2009.10.010 [DOI:10.1016/j.cbpc.2009.10.010]
50. Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science. 1991;74(10):3583-97. DOI: 10.3168/jds.S0022-0302(91)78551-2 [DOI:10.3168/jds.S0022-0302(91)78551-2]
51. Zhou, J., Xue, B., Hu, A., Yue, S., Wu, M., Hong, Q., … Xue, B. (2022). Effect of dietary peNDF levels on digestibility and rumen fermentation, and microbial community in growing goats. Frontiers in Microbiology, 13, 950587. doi: 10.3389/fmicb.2022.950587 [DOI:10.3389/fmicb.2022.950587]
Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadpour A, Forouzanfar S, Sajjadi N, Oryan A, Zarrin M. The impact of subjecting Turki-Qashqai goats to elevated thermo-humidity index under different nutritional systems on their performance, blood metabolites, and oxidative status. IJLS 2024; 1 (1) :1-11
URL: http://ijls.yu.ac.ir/article-1-35-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
year 1, Issue 1 (6-2024) Back to browse issues page
Iranian Journal of Livestock Science Iranian Journal of Livestock Science
Persian site map - English site map - Created in 0.04 seconds with 37 queries by YEKTAWEB 4712