[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: year 1, Issue 1 (6-2024) ::
IJLS 2024, 1(1): 19-25 Back to browse issues page
Effects of Raw Potato Waste, Molasses, and Bacterial Inoculation on Chemical Composition, Fermentation Quality, and in vitro Gas Production in Corn Silage
Fatemeh Kashefi , Ali Mahdavi , Ashkan Jebelli Javan , Ata Mahdavi , Babak Darabighane
Department of Animal Science, Faculty of Veterinary Medicine, Semnan University, Iran
Abstract:   (529 Views)
This study aimed to assess and compare the impact of adding raw potato waste (RPW) and molasses, with and without bacterial inoculations, on the composition, fermentation quality, and in vitro gas production in corn silage. The experiments were conducted on 8 treatments: corn silage without additives (CS), CS with molasses at 4% (CSMol), CS with RPW at 8% (CSPot8), and CS with RPW at 10% (CSPot10). The remaining four treatments were similar to the above treatments, but with bacterial inoculants added (CSb, CSMolb, CSPot8b and CSPot10b). The greatest dry matter, crude protein, and ash as well as the lowest neutral detergent fiber, were observed in the CSMolb. CSPot10 and CSPot8 did not show any significant difference in terms of water-soluble carbohydrates. No significant differences in pH were found among the groups treated with bacterial inoculants and CSMol.The highest concentrations of lactic and propionic acids, as well as the lowest concentrations of butyric acid and Ammonia-N, were all observed in the CSMolb group. Additionally, the lowest acetic acid concentration was detected in CSPot8. Regarding gas production at 24h (GP24), the groups that received molasses or RPW (with/without bacterial inoculants) had similar values of GP24, with the only significant difference found in CS and CSb treatments. Overall, CSMolb demonstrated superior performance compared to the other experimental treatments. Additionally, CSPot8b and CSPot10b treatments exhibited favorable fermentation parameters. These findings suggest that RPW can be effectively incorporated as a component of corn silage
 
Article number: 3
Keywords: Corn silage, fermentation, gas production, nutritive value, potato waste
Full-Text [PDF 602 kb]   (66 Downloads)    
Type of Study: Research Article | Subject: Animal genetics
Received: 2024/06/18 | Accepted: 2024/06/22 | Published: 2024/06/22
References
1. Aksu, T., Baytok E., & Bolat, D. (2004). Effects of a bacterial silage inoculant on corn silage fermentation and nutrient digestibility. Small Ruminant Research, 55(1), 249- 252. [DOI:10.1016/j.smallrumres.2003.12.012]
2. AOAC. (2005). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
3. Baah, J., Addah, W., Okine, E. & McAllister, T. (2011). Effects of homolactic bacterial inoculant alone or combined with an anionic surfactant on fermentation, aerobic stability and in situ ruminal degradability of barley silage. Asian Australasian Journal of Animal Sciences, 24(3), 369- 378. [DOI:10.5713/ajas.2011.10320]
4. Babaeinasab, Y., Rouzbehan, Y., Fazaeli, H. & Rezaei, J. (2015). Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage. Journal of Animal Science, 93(9), 4377- 4386. [DOI:10.2527/jas.2015-9082]
5. Baytok, E., Aksu, T., Karsli, MA., & Muruz H. (2005). The effects of formic acid, molasses and inoculant as silage additives on corn silage composition and ruminal fermentation characteristics in sheep. Turkish Journal of Veterinary and Animal Sciences, 29(2),469-474.
6. Blajman, JE., Paez, RB., Vinderola, CG., Lingua, MS., & Signorini, M. (2018). A meta‐analysis on the effectiveness of homofermentative and heterofermentative lactic acid bacteria for corn silage. Journal of Applied Microbiology, 125(6), 1655-1669. [DOI:10.1111/jam.14084]
7. Broderick, G., & Kang, J. (1980).Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media .Journal of Dairy Science, 63(1), 64-75. [DOI:10.3168/jds.S0022-0302(80)82888-8]
8. Chedly, K., & Lee, S. (2000). Silage from by-products for smallholders. FAO Plant Production and Protection Papers.85-96.
9. Contreras-Govea, FE., Muck, RE., Mertens, DR., & Weimer, PJ. (2011). Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Animal Feed Science and Technology, 163(1), 2-10. [DOI:10.1016/j.anifeedsci.2010.09.015]
10. Hashemzadeh-Cigari, F., Khorvash, M., Ghorbani, G. & Taghizadeh, A. (2011). The effects of wilting, molasses and inoculants on the fermentation quality and nutritive value of Lucerne silage. South African Journal of Animal Science, 41(4), 377-388. [DOI:10.4314/sajas.v41i4.8]
11. Henchion, M., Hayes, M., Mullen, A., Fenelon, M. & Tiwari, B. (2017). Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods, 6(7), 53. [DOI:10.3390/foods6070053]
12. Kung, L., Satter, L., Jones, B., Genin, K., Sudoma, A., Enders, G. & Kim, H. (1987). Microbial inoculation of low moisture alfalfa silage. Journal of Dairy Science, 70(10), 2069-2077. [DOI:10.3168/jds.S0022-0302(87)80255-2]
13. Kung, L., Shaver, R., Grant, R. & Schmidt, R. (2018). Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5), 4020-4033. [DOI:10.3168/jds.2017-13909]
14. Li, M., Zi, X., Zhou, H., Hou, G. & Cai, Y. (2014). Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Animal Feed Science and Technology, 197, 206-212. [DOI:10.1016/j.anifeedsci.2014.06.016]
15. MAFF. (1982). The analysis of agricultural materials. 2nd ed. Minist. Agric. Fish. Food, London, UK.
16. Makkar, HPS. (2010). In vitro screening of feed resources for efficiency of microbial protein synthesis. In "In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies", pp. 107-144. Springer. [DOI:10.1007/978-90-481-3297-3_7]
17. McDonald, P., Edwards, R., Greehalgh, J. & Morgan, C. (2002). Digestibility evaluation of foods. Animal nutrition. 6th ed. NY, USA: Longman Scientific and Technical. 1.
18. Menke, K H., Stengass, H (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
19. Mordenti, A.L., Giaretta, E., Campidonico, L., Parazza, P. & Formigoni, A. (2021). A review regarding the use of molasses in animal nutrition. Animals, 11(1), 115. [DOI:10.3390/ani11010115]
20. Nkosi, B., Meeske, R., Van der Merwe, H., & Groenewald, I. (2010). Effects of homo-fermentative and hetero-fermentative bacterial silage inoculants on potato hash silage fermentation and digestibility in rams. Animal, 157(3- 4), 195-200.
21. Nkosi, B., & Meeske R. (2010). Effects of whey and molasses as silage additives on potato hash silage quality and growth performance of lambs. South African Journal of Animal Science, 40(3), 229-237. [DOI:10.4314/sajas.v40i3.7]
22. Rezaei, J., Rouzbehan, Y. & Fazaeli H. (2009). Nutritive value of fresh and ensiled amaranth (Amaranthus hypochondriacus) treated with different levels of molasses. Animal Feed Science and Technology, 151(1- 2), 153-160. [DOI:10.1016/j.anifeedsci.2008.12.001]
23. Salemdeeb, R., Ermgassen KHJ Zu., Kim, MH., Balmford A. & Al-Tabbaa A. (2017). Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. Journal of Cleaner Production, 140(2), 871-880. [DOI:10.1016/j.jclepro.2016.05.049]
24. SAS, 2004. User's Guide: Statistics, Version 9.1. SAS Institute, Inc. Cary. NC.
25. Tian, J., Bryksa, BC. & Yada, RY. (2016). Feeding the world into the future-food and nutrition security: the role of food science and technology. .Frontiers in Life Science 9(3):155-166.
26. Van Soest, PV., Robertson, J., & Lewis, B. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. [DOI:10.3168/jds.S0022-0302(91)78551-2]
27. Aksu, T., Baytok E., & Bolat, D. (2004). Effects of a bacterial silage inoculant on corn silage fermentation and nutrient digestibility. Small Ruminant Research, 55(1), 249- 252. [DOI:10.1016/j.smallrumres.2003.12.012]
28. AOAC. (2005). Official Methods of Analysis. Vol. I. 15th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.
29. Baah, J., Addah, W., Okine, E. & McAllister, T. (2011). Effects of homolactic bacterial inoculant alone or combined with an anionic surfactant on fermentation, aerobic stability and in situ ruminal degradability of barley silage. Asian Australasian Journal of Animal Sciences, 24(3), 369- 378. [DOI:10.5713/ajas.2011.10320]
30. Babaeinasab, Y., Rouzbehan, Y., Fazaeli, H. & Rezaei, J. (2015). Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage. Journal of Animal Science, 93(9), 4377- 4386. [DOI:10.2527/jas.2015-9082]
31. Baytok, E., Aksu, T., Karsli, MA., & Muruz H. (2005). The effects of formic acid, molasses and inoculant as silage additives on corn silage composition and ruminal fermentation characteristics in sheep. Turkish Journal of Veterinary and Animal Sciences, 29(2),469-474.
32. Blajman, JE., Paez, RB., Vinderola, CG., Lingua, MS., & Signorini, M. (2018). A meta‐analysis on the effectiveness of homofermentative and heterofermentative lactic acid bacteria for corn silage. Journal of Applied Microbiology, 125(6), 1655-1669. [DOI:10.1111/jam.14084]
33. Broderick, G., & Kang, J. (1980).Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media .Journal of Dairy Science, 63(1), 64-75. [DOI:10.3168/jds.S0022-0302(80)82888-8]
34. Chedly, K., & Lee, S. (2000). Silage from by-products for smallholders. FAO Plant Production and Protection Papers.85-96.
35. Contreras-Govea, FE., Muck, RE., Mertens, DR., & Weimer, PJ. (2011). Microbial inoculant effects on silage and in vitro ruminal fermentation, and microbial biomass estimation for alfalfa, bmr corn, and corn silages. Animal Feed Science and Technology, 163(1), 2-10. [DOI:10.1016/j.anifeedsci.2010.09.015]
36. Hashemzadeh-Cigari, F., Khorvash, M., Ghorbani, G. & Taghizadeh, A. (2011). The effects of wilting, molasses and inoculants on the fermentation quality and nutritive value of Lucerne silage. South African Journal of Animal Science, 41(4), 377-388. [DOI:10.4314/sajas.v41i4.8]
37. Henchion, M., Hayes, M., Mullen, A., Fenelon, M. & Tiwari, B. (2017). Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods, 6(7), 53. [DOI:10.3390/foods6070053]
38. Kung, L., Satter, L., Jones, B., Genin, K., Sudoma, A., Enders, G. & Kim, H. (1987). Microbial inoculation of low moisture alfalfa silage. Journal of Dairy Science, 70(10), 2069-2077. [DOI:10.3168/jds.S0022-0302(87)80255-2]
39. Kung, L., Shaver, R., Grant, R. & Schmidt, R. (2018). Silage review: interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 101(5), 4020-4033. [DOI:10.3168/jds.2017-13909]
40. Li, M., Zi, X., Zhou, H., Hou, G. & Cai, Y. (2014). Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Animal Feed Science and Technology, 197, 206-212. [DOI:10.1016/j.anifeedsci.2014.06.016]
41. MAFF. (1982). The analysis of agricultural materials. 2nd ed. Minist. Agric. Fish. Food, London, UK.
42. Makkar, HPS. (2010). In vitro screening of feed resources for efficiency of microbial protein synthesis. In "In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies", pp. 107-144. Springer. [DOI:10.1007/978-90-481-3297-3_7]
43. McDonald, P., Edwards, R., Greehalgh, J. & Morgan, C. (2002). Digestibility evaluation of foods. Animal nutrition. 6th ed. NY, USA: Longman Scientific and Technical. 1.
44. Menke, K H., Stengass, H (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7-55.
45. Mordenti, A.L., Giaretta, E., Campidonico, L., Parazza, P. & Formigoni, A. (2021). A review regarding the use of molasses in animal nutrition. Animals, 11(1), 115. [DOI:10.3390/ani11010115]
46. Nkosi, B., Meeske, R., Van der Merwe, H., & Groenewald, I. (2010). Effects of homo-fermentative and hetero-fermentative bacterial silage inoculants on potato hash silage fermentation and digestibility in rams. Animal, 157(3- 4), 195-200.
47. Nkosi, B., & Meeske R. (2010). Effects of whey and molasses as silage additives on potato hash silage quality and growth performance of lambs. South African Journal of Animal Science, 40(3), 229-237. [DOI:10.4314/sajas.v40i3.7]
48. Rezaei, J., Rouzbehan, Y. & Fazaeli H. (2009). Nutritive value of fresh and ensiled amaranth (Amaranthus hypochondriacus) treated with different levels of molasses. Animal Feed Science and Technology, 151(1- 2), 153-160. [DOI:10.1016/j.anifeedsci.2008.12.001]
49. Salemdeeb, R., Ermgassen KHJ Zu., Kim, MH., Balmford A. & Al-Tabbaa A. (2017). Environmental and health impacts of using food waste as animal feed: a comparative analysis of food waste management options. Journal of Cleaner Production, 140(2), 871-880. [DOI:10.1016/j.jclepro.2016.05.049]
50. SAS, 2004. User's Guide: Statistics, Version 9.1. SAS Institute, Inc. Cary. NC.
51. Tian, J., Bryksa, BC. & Yada, RY. (2016). Feeding the world into the future-food and nutrition security: the role of food science and technology. .Frontiers in Life Science 9(3):155-166.
52. Van Soest, PV., Robertson, J., & Lewis, B. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. [DOI:10.3168/jds.S0022-0302(91)78551-2]
Add your comments about this article
Your username or Email:

CAPTCHA


XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kashefi F, Mahdavi A, Jebelli Javan A, Mahdavi A, Darabighane B. Effects of Raw Potato Waste, Molasses, and Bacterial Inoculation on Chemical Composition, Fermentation Quality, and in vitro Gas Production in Corn Silage. IJLS 2024; 1 (1) : 3
URL: http://ijls.yu.ac.ir/article-1-36-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
year 1, Issue 1 (6-2024) Back to browse issues page
Iranian Journal of Livestock Science Iranian Journal of Livestock Science
Persian site map - English site map - Created in 0.05 seconds with 37 queries by YEKTAWEB 4660